Skip to content →

Tag: Theano

Installing Theano and CUDA on Mac OS X

I started trying Theano today and wanted to use the GPU (NVIDIA GeForce GT 750M 2048 MB) on my Mac. Here’s a brief instruction on how to use the GPU on Mac, largely following the instructions from http://deeplearning.net/software/theano/install.html#mac-os.

Install Theano:

$ pip install Theano

Download and install CUDA: https://developer.nvidia.com/cuda-downloads

Put the following lines into your ~/.bash_profile:

# Theano and CUDA
PATH="/Developer/NVIDIA/CUDA-7.5/bin/:$PATH"
export LD_LIBRARY_PATH=/Developer/NVIDIA/CUDA-7.5/lib/
export CUDA_ROOT=/Developer/NVIDIA/CUDA-7.5/
export THEANO_FLAGS='mode=FAST_RUN,device=gpu,floatX=float32'

Note that the PATH line is necessary. Otherwise you may see the following message:

ERROR (theano.sandbox.cuda): nvcc compiler not found on $PATH. Check your nvcc installation and try again.

Configure Theano:

$ cat .theanorc 
[gcc]
cxxflags = -L/usr/local/lib -L/Developer/NVIDIA/CUDA-7.5/lib/

Test if GPU is used:

$ cat check.py 
from theano import function, config, shared, sandbox
import theano.tensor as T
import numpy
import time

vlen = 10 * 30 * 768  # 10 x #cores x # threads per core
iters = 1000

rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], T.exp(x))
print(f.maker.fgraph.toposort())
t0 = time.time()
for i in xrange(iters):
    r = f()
t1 = time.time()
print("Looping %d times took %f seconds" % (iters, t1 - t0))
print("Result is %s" % (r,))
if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
    print('Used the cpu')
else:
    print('Used the gpu')

$ THEANO_FLAGS=mode=FAST_RUN,device=cpu,floatX=float32 time python check.py 
[Elemwise{exp,no_inplace}(<TensorType(float32, vector)>)]
Looping 1000 times took 1.743682 seconds
Result is [ 1.23178029  1.61879337  1.52278066 ...,  2.20771813  2.29967761
  1.62323284]
Used the cpu
        2.47 real         2.19 user         0.27 sys
$ THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 time python check.py 
Using gpu device 0: GeForce GT 750M
[GpuElemwise{exp,no_inplace}(<CudaNdarrayType(float32, vector)>), HostFromGpu(GpuElemwise{exp,no_inplace}.0)]
Looping 1000 times took 1.186971 seconds
Result is [ 1.23178029  1.61879349  1.52278066 ...,  2.20771813  2.29967761
  1.62323296]
Used the gpu
        2.09 real         1.59 user         0.41 sys

A more realistic example:

$ cat lr.py 
import numpy
import theano
import theano.tensor as T
rng = numpy.random

N = 400
feats = 784
D = (rng.randn(N, feats).astype(theano.config.floatX),
rng.randint(size=N,low=0, high=2).astype(theano.config.floatX))
training_steps = 10000

# Declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")
w = theano.shared(rng.randn(feats).astype(theano.config.floatX), name="w")
b = theano.shared(numpy.asarray(0., dtype=theano.config.floatX), name="b")
x.tag.test_value = D[0]
y.tag.test_value = D[1]

# Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w)-b)) # Probability of having a one
prediction = p_1 > 0.5 # The prediction that is done: 0 or 1
xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1) # Cross-entropy
cost = xent.mean() + 0.01*(w**2).sum() # The cost to optimize
gw,gb = T.grad(cost, [w,b])

# Compile expressions to functions
train = theano.function(
            inputs=[x,y],
            outputs=[prediction, xent],
            updates=[(w, w-0.01*gw), (b, b-0.01*gb)],
            name = "train")
predict = theano.function(inputs=[x], outputs=prediction,
            name = "predict")

if any([x.op.__class__.__name__ in ['Gemv', 'CGemv', 'Gemm', 'CGemm'] for x in
        train.maker.fgraph.toposort()]):
    print('Used the cpu')
elif any([x.op.__class__.__name__ in ['GpuGemm', 'GpuGemv'] for x in
          train.maker.fgraph.toposort()]):
    print('Used the gpu')
else:
    print('ERROR, not able to tell if theano used the cpu or the gpu')
    print(train.maker.fgraph.toposort())

for i in range(training_steps):
    pred, err = train(D[0], D[1])

print("target values for D")
print(D[1])

print("prediction on D")
print(predict(D[0]))
$ THEANO_FLAGS=mode=FAST_RUN,device=cpu,floatX=float32 time python lr.py 
Used the cpu
target values for D
[ 1.  1.  0.  1.  0.  0.  0.  0.  0.  1.  1.  0.  0.  0.  0.  0.  0.  1.
  1.  0.  0.  1.  0.  0.  1.  1.  0.  1.  1.  1.  1.  0.  1.  1.  0.  1.
  0.  0.  0.  0.  0.  1.  0.  0.  0.  1.  1.  0.  1.  1.  1.  0.  1.  0.
  0.  0.  0.  0.  0.  1.  0.  1.  0.  0.  0.  1.  1.  1.  0.  0.  1.  1.
  1.  1.  0.  0.  0.  1.  0.  0.  1.  1.  0.  0.  1.  1.  1.  1.  0.  1.
  0.  0.  0.  0.  1.  0.  0.  1.  1.  1.  0.  0.  1.  1.  1.  1.  1.  1.
  1.  1.  1.  1.  0.  1.  1.  0.  0.  1.  0.  0.  0.  1.  0.  1.  1.  1.
  1.  0.  0.  1.  0.  1.  1.  1.  1.  1.  1.  1.  1.  1.  0.  1.  1.  0.
  1.  0.  1.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  0.  0.
  1.  0.  1.  0.  0.  1.  0.  0.  1.  1.  1.  1.  0.  1.  0.  0.  1.  0.
  0.  0.  1.  1.  1.  1.  1.  1.  1.  0.  1.  1.  1.  0.  1.  0.  1.  0.
  0.  1.  1.  0.  0.  1.  0.  0.  0.  0.  0.  0.  0.  1.  0.  1.  0.  1.
  1.  0.  1.  1.  1.  0.  0.  1.  1.  1.  1.  0.  0.  0.  1.  1.  0.  0.
  1.  0.  0.  0.  0.  1.  1.  1.  0.  1.  1.  1.  0.  1.  0.  0.  0.  0.
  0.  1.  1.  1.  1.  1.  1.  0.  0.  1.  1.  1.  0.  1.  0.  1.  0.  1.
  1.  0.  0.  0.  1.  1.  0.  0.  1.  0.  0.  0.  0.  1.  0.  0.  0.  1.
  0.  1.  0.  1.  1.  0.  1.  1.  0.  0.  0.  0.  1.  0.  0.  0.  0.  1.
  0.  1.  0.  0.  1.  1.  0.  0.  1.  1.  0.  1.  0.  1.  0.  0.  1.  1.
  0.  1.  1.  0.  0.  1.  1.  0.  0.  1.  0.  1.  1.  0.  0.  0.  1.  0.
  0.  0.  1.  0.  0.  0.  0.  1.  1.  0.  1.  1.  1.  0.  1.  1.  1.  1.
  1.  0.  0.  1.  0.  0.  0.  0.  1.  1.  0.  0.  0.  0.  0.  1.  1.  1.
  0.  1.  1.  1.  0.  0.  0.  0.  1.  1.  1.  0.  0.  0.  0.  1.  0.  0.
  1.  1.  0.  1.]
prediction on D
[1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0
 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1 1 1
 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1
 1 0 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1
 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0
 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1
 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1
 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0
 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1
 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1]
        8.92 real         8.24 user         1.14 sys
$ THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 time python lr.py 
Using gpu device 0: GeForce GT 750M
Used the gpu
target values for D
[ 1.  0.  0.  0.  0.  1.  0.  0.  1.  1.  0.  0.  1.  1.  0.  0.  1.  1.
  0.  0.  0.  1.  1.  0.  1.  1.  1.  0.  0.  1.  1.  1.  1.  1.  1.  0.
  0.  1.  0.  0.  1.  1.  0.  0.  1.  1.  0.  1.  0.  1.  1.  0.  1.  1.
  1.  0.  1.  1.  0.  0.  0.  1.  1.  1.  1.  1.  0.  0.  1.  1.  0.  1.
  1.  1.  1.  0.  1.  1.  0.  1.  1.  1.  0.  0.  0.  1.  1.  0.  0.  0.
  1.  0.  1.  0.  0.  0.  0.  1.  1.  1.  1.  0.  0.  1.  0.  1.  0.  1.
  1.  0.  1.  1.  0.  0.  0.  0.  1.  0.  0.  1.  0.  0.  0.  1.  0.  1.
  1.  1.  0.  0.  0.  1.  0.  1.  0.  1.  0.  1.  1.  1.  1.  1.  0.  1.
  1.  0.  1.  1.  0.  0.  1.  0.  1.  0.  0.  1.  0.  0.  1.  0.  0.  0.
  1.  0.  0.  1.  1.  1.  1.  0.  0.  0.  1.  1.  1.  0.  1.  0.  0.  1.
  1.  1.  1.  1.  1.  1.  1.  1.  0.  0.  0.  0.  0.  1.  1.  1.  0.  1.
  0.  1.  0.  1.  1.  1.  1.  0.  0.  0.  1.  1.  1.  1.  0.  0.  0.  1.
  0.  1.  1.  1.  0.  1.  1.  1.  0.  0.  0.  0.  1.  0.  1.  0.  0.  1.
  0.  0.  1.  1.  0.  1.  0.  1.  1.  1.  0.  0.  1.  1.  0.  0.  0.  0.
  1.  0.  0.  1.  0.  0.  0.  0.  1.  0.  0.  1.  1.  1.  1.  1.  1.  1.
  0.  1.  1.  0.  0.  0.  1.  0.  1.  1.  0.  0.  0.  0.  0.  0.  1.  0.
  1.  1.  1.  0.  0.  1.  0.  1.  0.  0.  1.  0.  1.  0.  0.  1.  0.  0.
  1.  1.  0.  1.  1.  1.  0.  0.  0.  0.  0.  1.  0.  1.  0.  0.  0.  1.
  0.  0.  1.  1.  0.  1.  1.  0.  1.  1.  1.  0.  1.  1.  0.  0.  0.  0.
  0.  0.  1.  1.  1.  1.  1.  1.  1.  1.  0.  1.  1.  1.  0.  1.  0.  1.
  1.  1.  0.  1.  1.  0.  1.  1.  1.  0.  0.  1.  1.  0.  0.  0.  0.  0.
  1.  0.  0.  1.  1.  1.  0.  1.  0.  0.  1.  1.  0.  1.  1.  0.  1.  1.
  0.  0.  1.  0.]
prediction on D
[1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0
 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1
 1 0 1 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 1
 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1
 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1
 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1
 1 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0
 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1
 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1
 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0
 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0]
       19.78 real        17.61 user         1.24 sys

So it seems this GPU does not outperform the CPU. Well,GT 750M may not be the best GPU you can get… Someone else here has a similar experience.

 

5 Comments