Skip to content →

Tag: IP

Technical Details

We define a BPF filter as “icmp and dst host <bouncer_ip>”, which filters out all none-ICMP packets and packets not destined to the bouncer. The we compile this filter and set the filter to the capture device.

When the capture device captures a packet, a process_pkt function is called to process the packet. And that is where we validate the packets and then, if the packet is valid, update
the packet and then send it out, or write the packet to a dump file.

The process of validating the packets are as follows:

  1. Validate checksum of IP header.
  2. Validate TTL of IP.
  3. Validate IP source address
  4. Validate ICMP header checksum. 
  5. Validate ICMP type and code. 

Since we write the packet to a dump file in a separate function, so a pointer to the dump file handler is passed to the processing function when the process_pkt function is called. The same method is used to pass server IP address and test mode flag.

We keep a linked list of all the ICMP echo requests. When a ICMP echo reply is received, we go through the linked list to find out where
the original echo request comes from.

The code is as follows.

bouncer.h:

/* Global definitions for the port bouncer
 * Packet headers and so on
 */

#define _BSD_SOURCE 1

#include 
#include 
#include 
#include 
#include 

/* PCAP declarations*/
#include 

/* Standard networking declaration */
#include 
#include 
#include 

/*
 * The following system include files should provide you with the 
 * necessary declarations for Ethernet, IP, and TCP headers
 */

#include 
#include 
#include 
#include 

/* Add any otherdeclarations you may need here... */

#define MAX_PACKET_SIZE 65535

/* Ethernet addresses are 6 bytes */
//#define ETHER_ADDR_LEN	6

/* Ethernet header */
struct sniff_ethernet {
    u_char ether_dhost[ETHER_ADDR_LEN]; /* Destination host address */
    u_char ether_shost[ETHER_ADDR_LEN]; /* Source host address */
    u_short ether_type; /* IP? ARP? RARP? etc */
};

/* IP header */
struct sniff_ip {
    u_char ip_vhl; /*version << 4 | header length >> 2 */
    u_char ip_tos; /* type of service */
    u_short ip_len; /* total length */
    u_short ip_id; /* identification */
    u_short ip_off; /* fragment offset field */
#define IP_RF 0x8000		/* reserved fragment flag */
#define IP_DF 0x4000		/* dont fragment flag */
#define IP_MF 0x2000		/* more fragments flag */
#define IP_OFFMASK 0x1fff	/* mask for fragmenting bits */
    u_char ip_ttl; /*time to live */
    u_char ip_p; /* protocol */
    u_short ip_sum; /* checksum */
    struct in_addr ip_src, ip_dst; /* source and dest address */
};
#define IP_HL(ip)		(((ip)->ip_vhl) & 0x0f)
#define IP_V(ip)		(((ip)->ip_vhl) >> 4)

/* ICMP header */
struct sniff_icmp {
    u_char icmp_type;
#define ICMP_ECHO 0x8
#define ICMP_REPLY 0x0
    u_char icmp_code;
    u_int16_t icmp_sum;
    u_int16_t icmp_id;
u_int16_t icmp_sequence;
};

#define SIZE_ETHERNET 14
#define SIZE_ICMP 8

#define IP_QUAD(ip)  (ip)>>24,((ip)&0x00ff0000)>>16,((ip)&0x0000ff00)>>8,((ip)&0x000000ff)

struct request{
    struct request* next;
    struct sniff_ip* ip;
    struct sniff_icmp* icmp;
};

process_pkt.c:

#include "bouncer.h"

/* CRC
 * Adopted from http://www.netfor2.com/ipsum.htm
 */
typedef unsigned short u16;
typedef unsigned long u32;

u16 ip_sum_calc(u16 len_ip_header, u16 buff[]) {
    u16 word16;
    u32 sum =0;
    u16 i;

    // make 16 bit words out of every two adjacent 8 bit words in the packet
    // and add them up
    for (i = 0; i < len_ip_header; i = i + 2) {
        word16 = ((buff[i] << 8)&0xFF00)+(buff[i + 1]&0xFF);
        sum = sum + (u32) word16;
    }

    // take only 16 bits out of the 32 bit sum and add up the carries
    while (sum >> 16)
        sum = (sum & 0xFFFF)+(sum >> 16);

    // one'scomplement the result
    sum = ~sum;

    return ((u16) sum);
}

void process_pkt(u_char *args, struct pcap_pkthdr *header,
        u_char *packet) {
    if(header->caplen < header->len){
        fprintf(stderr, "ERROR: Packet data not captured completely\n");
        return;
    }
    /* Main function to perform the bouncing */
    u_char testmode = *args;
    char *serv_addr = (char *) (args + 1);
    u_int32_t dst_addr =inet_addr(serv_addr);
    //pcap_dumper_t *dumper = NULL;
    u_char *dumper = NULL;
    memcpy(&dumper, args + 2 + strlen(serv_addr), sizeof (pcap_dumper_t *));
    struct request ** prequests = NULL;
    memcpy(&prequests, args + 2 + strlen(serv_addr) + sizeof (pcap_dumper_t *), sizeof (struct request**));
    //struct request *requests = *prequests;

    /* Typecasting packet*/
    struct sniff_ethernet *ethernet; /* The ethernet header */
struct sniff_ip *ip; /* The IP header */
    struct sniff_icmp *icmp; /* The ICMP header */
    char *padding; /* Packet padding */
    u_int size_ip;
    ethernet = (struct sniff_ethernet*) (packet);
    ip = (struct sniff_ip*) (packet + SIZE_ETHERNET);
    size_ip = IP_HL(ip)*4;
    u_int32_t srcip = ntohl(ip->ip_src.s_addr);
    if (size_ip < 20 || size_ip > header->len - SIZE_ETHERNET) {
        fprintf(stderr, "ERROR: Invalid IP header length: %ubytes\n", size_ip);
        if (testmode == 1) {
            header->caplen = 0;
            header->len = 0;
            pcap_dump(dumper, header, packet);
        }
        return;
    }
    icmp = (struct sniff_icmp*) (packet + SIZE_ETHERNET + size_ip);
    padding = (u_char *) (packet + SIZE_ETHERNET + size_ip + SIZE_ICMP);

    /* Validate the packet */
    /* Validate IP header */
    /* Check IP version */
    u_char v = ip->ip_vhl>> 4;
    if(v != 4){
        fprintf(stderr, "ERROR: Wrong IP verison %d\n", v);
        return;
    }
    /* Validate CRC */
    u16 ipbuf[size_ip];
    u16 ipsum = ntohs(ip->ip_sum);
    int i;
    for (i = 0; i < size_ip; i++) {
        if (i == 10 || i == 11)
            ipbuf[i] = 0x00;
        else
            ipbuf[i] = *((u_char *) (packet + SIZE_ETHERNET + i));
    }
    if (ipsum != ip_sum_calc(size_ip, ipbuf)) {
fprintf(stderr, "ERROR: ip checksum mismatch. Dropping packet from %u.%u.%u.%u\n",
                IP_QUAD(srcip));
        if (testmode == 1) {
            header->caplen = 0;
            header->len = 0;
            pcap_dump(dumper, header, packet);
        }
        return;
    }
    /* Validate TTL */
    if (ip->ip_ttl <= 0) {
        fprintf(stderr, "ERROR: ip TTL expired. Dropping packet from %u.%u.%u.%u\n",
IP_QUAD(srcip));
        if (testmode == 1) {
            header->caplen = 0;
            header->len = 0;
            pcap_dump(dumper, header, packet);
        }
        return;
    }
    /* Validate IP source address */
    if (srcip == 0x00000000 || srcip >= 0xE0000000
            || (srcip & 0x000000FF) == 0x000000FF || (srcip & 0x000000FF) == 0x00000000) {
        fprintf(stderr, "ERROR: ip source address invalid. Dropping packetfrom %u.%u.%u.%u\n",
                IP_QUAD(srcip));
        if (testmode == 1) {
            header->caplen = 0;
            header->len = 0;
            pcap_dump(dumper, header, packet);
        }
        return;
    }

    /* Validate ICMP header */
    /* Validate ICMP type and code */
    if (!(icmp->icmp_code == 0 && (icmp->icmp_type == 0 || icmp->icmp_type == 8))) {
        fprintf(stderr, "ERROR: icmp type orcode unsupported. Dropping packet from %u.%u.%u.%u\n",
                IP_QUAD(srcip));
        if (testmode == 1) {
            header->caplen = 0;
            header->len = 0;
            pcap_dump(dumper, header, packet);
        }
        return;
    }
    /* Validate CRC */
    int plen = header->len - SIZE_ETHERNET - size_ip - 8;
    u16 icmpbuf[8 + plen];
    u16 icmpsum = ntohs(icmp->icmp_sum);
    for (i = 0; i < 8;i++) {
        if (i == 2 || i == 3)
            icmpbuf[i] = 0x00;
        else
            icmpbuf[i] = *((u_char *) (packet + SIZE_ETHERNET + size_ip + i));
    }
    for (i = 0; i < plen; i++) {
        icmpbuf[i + 8] = *((u_char *) (padding + i));
    }
    if (icmpsum != ip_sum_calc(8 + plen, icmpbuf)) {
        fprintf(stderr, "ERROR: icmp checksum mismatch. Dropping packet from %u.%u.%u.%u\n",
                IP_QUAD(srcip));
        if(testmode == 1) {
            header->caplen = 0;
            header->len = 0;
            pcap_dump(dumper, header, packet);
        }
        return;
    }

    /* Update the packet */
    if (icmp->icmp_type == 0) {
        /* ICMP echo reply */
        ip->ip_src.s_addr = ip->ip_dst.s_addr;
        /* Search the linked list for client address */
        if (*prequests == NULL) {
            fprintf(stderr, "ERROR: process_pkt: nullrequest linked list\n");
            return;
        } else {
            /* Find where the request comes from */
            struct request *r;
            for (r = *prequests; r != NULL; r = r->next) {
                if (r->icmp->icmp_id == icmp->icmp_id && r->icmp->icmp_sequence == icmp->icmp_sequence) {
                    ip->ip_dst.s_addr = r->ip->ip_src.s_addr;
                    break;
                }
}
            if (r == NULL) {
                fprintf(stderr, "ERROR: no match echo requests in stack\n");
                return;
            }
            /* Remove the request from the linked list */
            struct request *rr = *prequests;
            if (rr == r) {
                free(rr->icmp);
                free(rr->ip);
                *prequests = r->next;
                free(r);
            } else {
                while (rr!= r)
                    rr = rr->next;
                free(rr->icmp);
                free(rr->ip);
                rr->next = r->next;
                free(r);
            }
        }
    } else {
        /* ICMP echo request */
        /* Add new request to linked list */
        struct request *r;
        r = malloc(sizeof (struct request));
        if (r == NULL) {
            perror("ERROR: process_pkt:malloc");
            return;
        }
        struct sniff_ip *ipt = malloc(sizeof (struct sniff_ip));
        if (ipt == NULL) {
            perror("ERROR: process_pkt: malloc");
            return;
        }
        memcpy(ipt, ip, sizeof (struct sniff_ip));
        r->ip = ipt;
        struct sniff_icmp* icmpt = malloc(sizeof (struct sniff_icmp));
        if (icmpt == NULL) {
            perror("ERROR: process_pkt: malloc");
return;
        }
        memcpy(icmpt, icmp, sizeof (struct sniff_icmp));
        r->icmp = icmpt;
        r->next = *prequests;
        *prequests = r;
        /* Update destination address */
        ip->ip_src.s_addr = ip->ip_dst.s_addr;
        ip->ip_dst.s_addr = dst_addr;
    }
    /* Recaculate CRC */
    for (i = 0; i < size_ip; i++) {
        if (i == 10 || i == 11)
            ipbuf[i] = 0x00;
        else
ipbuf[i] = *((u_char *) (packet + SIZE_ETHERNET + i));
    }
    ip->ip_sum = htons(ip_sum_calc(size_ip, ipbuf));
    if (testmode == 0) {
        pcap_t *handle = NULL;
        char errbuf[PCAP_ERRBUF_SIZE], *device = "tap0";
        memset(errbuf, 0, PCAP_ERRBUF_SIZE);
        if ((handle = pcap_open_live(device, MAX_PACKET_SIZE, 1, 512, errbuf)) == NULL) {
            fprintf(stderr, "ERROR: %s\n", errbuf);
            exit(1);
        }
        /*Send the packet to network */
        if (pcap_sendpacket(handle, packet, header->len) != 0) {
            perror("ERROR: process_pkt: pcap_sendpacket");
            exit(1);
        }
        pcap_close(handle);
        fprintf(stderr, "Bouncer: packet sent\n");
    } else {
        /* Or put it back on stdout */
        int i = 0;
        for (i = 0; i < ETHER_ADDR_LEN; i++)
            ethernet->ether_shost[i] = 1;
        if(icmp->icmp_type == 0) {
            for (i = 0; i < ETHER_ADDR_LEN; i++)
                ethernet->ether_dhost[i] = 2;
        } else if (icmp->icmp_type == 8) {
            for (i = 0; i < ETHER_ADDR_LEN; i++)
                ethernet->ether_dhost[i] = 3;
        }
        pcap_dump(dumper, header, packet);

////////////////////////////////////////////////////////////////////////
/*
        pcap_t *handle = NULL;
        char errbuf[PCAP_ERRBUF_SIZE], *device = "tap0";
        memset(errbuf, 0, PCAP_ERRBUF_SIZE);
        if ((handle = pcap_open_live(device, MAX_PACKETS_NO, 1, 512, errbuf)) == NULL) {
            fprintf(stderr, "ERROR: %s\n", errbuf);
            exit(1);
        }
        if (pcap_sendpacket(handle, packet, header->len) != 0) {
perror("ERROR: process_pkt: pcap_sendpacket");
            exit(1);
        }
        pcap_close(handle);
        fprintf(stderr, "Packet sent\n");
*/
        ////////////////////////////////////////////////////////////////////////

    }
    return;
}
Leave a Comment

Code

The code looks as follows.


#include 
#include 
#include 
#include 
#include
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include "event.h"
#include "rudp.h"
#include "rudp_api.h"

//#define DROP 3

rudp_socket_t rs_head = NULL;

peer_t find_peer(peer_t *firstp, structsockaddr_in* sa) {
    peer_t p;
    //int pc = 0;
    for (p = *firstp; p != NULL; p = p->next) {
        //printf("peer count: %d\n", ++pc);
        if (memcmp(p->sa, sa, sizeof (struct sockaddr_in)) == 0)
            return p;
    }
    //printf("peer not found, creating new peer\n");
    p = malloc(sizeof (struct peer));
    if (p == NULL) {
        perror("find_peer: malloc");
        return NULL;
    }
    struct sockaddr_in*sin;
    sin = malloc(sizeof (struct sockaddr_in));
    if (sin == NULL) {
        perror("peerfind: malloc");
        return NULL;
    }
    memcpy(sin, sa, sizeof (struct sockaddr_in));
    p->sa = sin;
    p->packets = NULL;
    p->status = PEER_STATUS_INIT;
    p->sb = 0;
    p->sm = RUDP_WINDOW - 1;
    p->sn = 0;
    p->next = (*firstp);
    *firstp = p;
    return p;
}

int remove_peer(peer_t *firstp,peer_t rp) {
    peer_t p, *pp;
    pp = firstp;
    for (p = *firstp; p != NULL; p = p->next) {
        if (p == rp) {
            *pp = rp->next;
            free(rp->sa);
            free(rp);
            return 0;
        }
        pp = &p->next;
    }
    return -1;
}

/*
 * Add packet into a linked list.
 * Inserted in a way that packets with smaller seqno are always placed in front
 */
int add_packet(packet_t*packet_head, packet_t *pkt) {
    if (*packet_head == NULL) {
        (*pkt)->next = *packet_head;
        *packet_head = *pkt;
    } else {
        packet_t *p = malloc(sizeof (packet_t));
        for ((*p) = *packet_head; (*p) != NULL; (*p) = (*p)->next) {
            if ((*pkt)->header->seqno == (*p)->header->seqno + 1) {
                (*pkt)->next = (*p)->next;
                (*p)->next = *pkt;
                break;
}
        }
        //return -1;
    }
    //printf("packet added: %d type %d\n", (*pkt)->header->seqno, (*pkt)->header->type);
    return 0;
}

/*
 * Remove a packet from a linked list
 */
int remove_packet(packet_t *packet_head, packet_t pkt) {
    packet_t p, *pp;
    pp = packet_head;
    for (p = *packet_head; p != NULL; p = p->next) {
        if (pkt == p) {
            //printf("packet seq no %d removed\n",pkt->header->seqno);
            *pp = p->next;
            free(p);
            return 0;
        }
        pp = &p->next;
    }
    return -1;
}

/*
 * rudp_socket: Create a RUDP socket.
 * May use a random port by setting port to zero.
 */

rudp_socket_t rudp_socket(int port32) {
    int sockfd;
    sockfd = socket(PF_INET, SOCK_DGRAM, 0);
    if (sockfd < 0) {
        perror("rudp_socket: socket");
return NULL;
    }
    struct sockaddr_in *sin;
    sin = malloc(sizeof (struct sockaddr_in));
    if (sin == NULL) {
        perror("rudp_socket: malloc");
        return NULL;
    }
    sin->sin_addr.s_addr = htonl(INADDR_ANY);
    //sin->sin_addr.s_addr = inet_addr("127.0.0.1");
    sin->sin_family = AF_INET;
    uint16_t port = port32;
    if (port == 0) {
        srand(time(0));
        port = (rand() % (65535 - 1024)) + 1024;
sin->sin_port = htons(port);
        while (bind(sockfd, (struct sockaddr*) sin, sizeof (struct sockaddr_in)) < 0) {
            port = (rand() % (65535 - 1024)) + 1024;
            sin->sin_port = htons(port);
        }
    } else {
        sin->sin_port = htons(port);
        if (bind(sockfd, (struct sockaddr*) sin, sizeof (struct sockaddr_in)) < 0) {
            perror("rudp_socket: bind");
            return NULL;
        }
}
    //printf("rudp_socket: bind successfully on port: %d\n", port);
    rudp_socket_t rs;
    rs = malloc(sizeof (struct rudp_socket));
    if (rs == NULL) {
        perror("rudp_socket: malloc");
        return NULL;
    }
    rs->sockfd = sockfd;
    rs->peers = NULL;
    rs->next = rs_head;
    rs_head = rs;
    /*
        int rc = 0;
        rudp_socket_t prs;
        for(prs = rs_head; prs != NULL; prs =prs->next)
            printf("rudp socket count: %d\n", ++rc);
     */
    event_fd(rs->sockfd, rudp_listen, rs, "rudp_listen");
    return rs;
}

/*
 * Listens on the socket
 */
int rudp_listen(int fd, void *arg) {
    rudp_socket_t rs;
    for (rs = rs_head; rs != NULL; rs = rs->next) {
        if (rs->sockfd == fd)
            break;
    }
    if (rs == NULL) {
        return -1;
    }
    int (*handler)(rudp_socket_t,struct sockaddr_in *, char *, int);

    /*
        client_addr.sin_family = AF_INET;
        client_addr.sin_addr.s_addr = htonl(INADDR_ANY);
        client_addr.sin_port = htons(0);
     */
    unsigned int clientlen = sizeof(struct sockaddr);
    struct sockaddr client_sockaddr;
    int bufsize = RUDP_MAXPKTSIZE + sizeof (struct rudp_hdr);
    int msglen = 0;
    char message[bufsize];
    memset(message, 0, bufsize);
    msglen =recvfrom(rs->sockfd, message, bufsize, 0, & client_sockaddr, &clientlen);
    if (msglen < 0) {
        perror("rudp_listen: recvfrom");
        return -1;
    }
    struct sockaddr_in client_addr;
    memcpy(&client_addr, &client_sockaddr, clientlen);
    if (ntohs(client_addr.sin_port) == 0) {
        perror("rudp_listen: recvfrom port 0");
        return -1;
    }
    //printf("received from port: %d\n",ntohs(client_addr.sin_port));
    peer_t p = find_peer(&(rs->peers), &client_addr);
    if (p == NULL) {
        return -1;
    }
    //printf("peer: %d\n", ntohs(p->sa->sin_port));
    if (msglen < 0) {
        perror("rudp_recvfrom: recvfrom");
        return -1;
    } else if (msglen < (sizeof (struct rudp_hdr))) {
        fprintf(stderr, "rudp_recvfrom: error receiving packet");
        return -1;
    }
    structrudp_hdr *msgheader = malloc(sizeof (struct rudp_hdr));
    if (msgheader == NULL) {
        perror("rudp_recvfrom: malloc");
        return -1;
    }
    memcpy(msgheader, message, sizeof (struct rudp_hdr));

    //printf("status=%d sn=%d\n", p->status, p->sn);
    //printf("message from port %d, type=%d seqno=%d\n", ntohs(p->sa->sin_port), msgheader->type, msgheader->seqno);
    struct rudp_hdr *replyheader = malloc(sizeof (structrudp_hdr));
    if (replyheader == NULL) {
        perror("rudp_recvfrom: malloc");
        return -1;
    }
    replyheader->version = RUDP_VERSION;
    switch (p->status) {
        case PEER_STATUS_INIT:
            if (msgheader->type == RUDP_SYN) {
                p->status = PEER_STATUS_ACTIVE;
                p->sn = msgheader->seqno + 1;
                replyheader->seqno = msgheader->seqno + 1;
replyheader->type = RUDP_ACK;
                sendto(fd, replyheader, sizeof (struct rudp_hdr), 0,
                        (struct sockaddr*) & client_addr, clientlen);
                //printf("ACK sent. Turns active\n");
            }
            break;
        case PEER_STATUS_PASSIVE:
            if (msgheader->type == RUDP_ACK && msgheader->seqno == 1) {
                p->status = PEER_STATUS_ACTIVE;
                packet_t pkt;
for (pkt = p->packets; pkt != NULL; pkt = pkt->next) {
                    if (pkt->header->seqno == msgheader->seqno - 1) {
                        pkt->status = ACKED;
                        //printf("syn packet no. %d acked\n", pkt->header->seqno);
                        break;
                    }
                }
                //p->sn = 1;
                p->sb = 1;
                p->sm = RUDP_WINDOW;
    }
            break;
        case PEER_STATUS_ACTIVE:
            switch (msgheader->type) {
                case RUDP_ACK:
                    //printf("sb: %d sm: %d\n", p->sb, p->sm);
                    if (msgheader->seqno >= p->sb) {
                        packet_t pkt;
                        for (pkt = p->packets; pkt != NULL; pkt = pkt->next) {
                            if (pkt->header->seqno == msgheader->seqno -    1) {
                                pkt->status = ACKED;
                                //printf("data packet no. %d acked\n", pkt->header->seqno);
                                break;
                            }
                        }
                        p->sm += msgheader->seqno - p->sb;
                        p->sb = msgheader->seqno;
                    }
                    break;
    case RUDP_DATA:
#ifdef DROP
                    srand(time(0));
                    if (rand() % DROP == 0) {
                        printf("packet dropped\n");
                        break;
                    }
#endif
                    if (msgheader->seqno == p->sn) {
                        p->sn = msgheader->seqno + 1;
                        replyheader->seqno = msgheader->seqno + 1;
    replyheader->type = RUDP_ACK;
                        handler = malloc(sizeof (int (*)()));
                        if (handler == NULL) {
                            perror("rudp_listen: malloc");
                            return -1;
                        }
                        handler = (int (*)(rudp_socket_t, struct sockaddr_in*, char *, int))arg;
                        void *data;
                        data = malloc(msglen -    sizeof (struct rudp_hdr));
                        if (data == NULL) {
                            perror("rudp_listen: malloc");
                            return -1;
                        }
                        memcpy(data, message + sizeof (struct rudp_hdr),
                                msglen - sizeof (struct rudp_hdr));
                        handler(rs, &client_addr, data, msglen - sizeof (struct    rudp_hdr));
                        sendto(fd, replyheader, sizeof (struct rudp_hdr), 0,
                                (struct sockaddr*) & client_addr, clientlen);
                    }
                    break;
                case RUDP_SYN:
                    p->status = PEER_STATUS_ACTIVE;
                    p->sn = msgheader->seqno + 1;
                    replyheader->seqno = msgheader->seqno + 1;
    replyheader->type = RUDP_ACK;
                    sendto(fd, replyheader, sizeof (struct rudp_hdr), 0,
                            (struct sockaddr*) & client_addr, clientlen);
                    break;
                case RUDP_FIN:
                    p->status = PEER_STATUS_CLOSED;
                    p->sn = msgheader->seqno + 1;
                    replyheader->seqno = msgheader->seqno + 1;
    replyheader->type = RUDP_ACK;
                    sendto(fd, replyheader, sizeof (struct rudp_hdr), 0,
                            (struct sockaddr*) & client_addr, clientlen);
                    break;
                default:
                    fprintf(stderr, "rudp_listen: invalid RUDP type %d\n",
                            msgheader->type);
                    break;
            }
            break;
        case    PEER_STATUS_CLOSING:
            if (msgheader->type == RUDP_ACK && msgheader->seqno == p->sn + 1) {
                p->status = PEER_STATUS_CLOSED;
                //printf("peer closed\n");
            }
            break;
        case PEER_STATUS_CLOSED:
            if (msgheader->type == RUDP_FIN) {
                p->status = PEER_STATUS_CLOSED;
                p->sn = msgheader->seqno + 1;
    replyheader->seqno = msgheader->seqno + 1;
                replyheader->type = RUDP_ACK;
                sendto(fd, replyheader, sizeof (struct rudp_hdr), 0,
                        (struct sockaddr*) & client_addr, clientlen);
            }
            /*
                        if (msgheader->type == RUDP_SYN) {
                            p->status = PEER_STATUS_ACTIVE;
    p->sn = msgheader->seqno + 1;
                            replyheader->seqno = msgheader->seqno + 1;
                            replyheader->type = RUDP_ACK;
                            sendto(fd, replyheader, sizeof (struct rudp_hdr), 0,
                                    (struct sockaddr*) & client_addr, clientlen);
                        } else if (msgheader->type == RUDP_FIN) {
                            p->status =    PEER_STATUS_CLOSED;
                            p->sn = msgheader->seqno + 1;
                            replyheader->seqno = msgheader->seqno + 1;
                            replyheader->type = RUDP_ACK;
                            sendto(fd, replyheader, sizeof (struct rudp_hdr), 0,
                                    (struct sockaddr*) & client_addr, clientlen);
                        }
             */
            break;
    default:
            fprintf(stderr, "rudp_listen: invalid peer status %d\n",
                    p->status);
            break;
    }
    return 0;
}

/*
 * Keep checking if there are packets to be sent out
 */
int rudp_send(int fd, void *arg) {
    event_timeout_delete(rudp_send, arg);
    struct timeval now, interval, t;
    gettimeofday(&now, NULL);
    interval.tv_sec = 0;
    interval.tv_usec = RUDP_CHECK_INTERVAL;
    timeradd(&now, &interval, &t);
    rudp_socket_t rs;
    peer_t p;
    packet_t pkt;
    void *msg;
    int len = sizeof (struct rudp_hdr);
    //int rsc = 0;
    if (rs_head == NULL) {
        return 0;
    }
    for (rs = rs_head; rs != NULL; rs = rs->next) {
        //printf("rudp socket count: %d\n", ++rsc);
        for (p = rs->peers; p != NULL; p = p->next) {
            if (p->status == PEER_STATUS_CLOSED) {
    if (remove_peer(&(rs->peers), p) < 0) {
                    perror("rudp_send: remove_peer");
                    return -1;
                } else {
                    event_timeout(t, rudp_send, NULL, "rudp_send");
                }
                return 0;
            } else if (p->status != PEER_STATUS_ACTIVE) {
                event_timeout(t, rudp_send, NULL, "rudp_send");
                return 0;
            }
        //int pc = 0;
            for (pkt = p->packets; pkt != NULL; pkt = pkt->next) {
                //printf("pakcet %d: seq number %d status %d\n", ++pc, pkt->header->seqno, pkt->status);
                if (pkt->status == ACKED) {
                    if (remove_packet(&(p->packets), pkt) == -1) {
                        return -1;
                    }
                    event_timeout(t, rudp_send, NULL, "rudp_send");
        return 0;
                }
                if ((pkt->status == IN_QUEUE || pkt->status == TIMEOUT) &&
                        pkt->header->seqno >= p->sb &&
                        pkt->header->seqno <= p->sm) {
                    if (pkt->header->type == RUDP_FIN) {
                        p->status = PEER_STATUS_CLOSING;
                    }
                    len = sizeof (struct        rudp_hdr) + pkt->datalen;
                    msg = malloc(len);
                    if (msg == NULL) {
                        perror("rudp_send: malloc");
                        return -1;
                    }
                    memcpy(msg, pkt->header, sizeof (struct rudp_hdr));
                    memcpy(msg + sizeof (struct rudp_hdr), pkt->data, pkt->datalen);
                    sendto(rs->sockfd, msg,        len, 0,
                            (struct sockaddr*) p->sa, sizeof (struct sockaddr));
                    pkt->status = SENT;
                    pkt->trans_count++;
                    struct timeval now, interval, t;
                    gettimeofday(&now, NULL);
                    if (RUDP_TIMEOUT >= 1000) {
                        interval.tv_sec = RUDP_TIMEOUT / 1000;
                        interval.tv_usec = 0;
        } else {
                        interval.tv_sec = 0;
                        interval.tv_usec = RUDP_TIMEOUT * 1000;
                    }
                    timeradd(&now, &interval, &t);
                    event_timeout(t, rudp_timeout, pkt, "rudp_timeout");
                }

            }
        }
    }
    event_timeout(t, rudp_send, NULL, "rudp_send");
    return 0;
}

int rudp_timeout(int a, void *arg) {
        packet_t pkt = (packet_t) arg;
    event_timeout_delete(rudp_timeout, pkt);
    if (pkt->status != ACKED) {
        //printf("Timeout: %d\n", pkt->header->seqno);
        pkt->status = TIMEOUT;
        if (pkt->trans_count >= RUDP_MAXRETRANS)
            pkt->status = FAILED;
    }
    return 0;
}

/*
 *rudp_close: Close socket
 */

int rudp_close(rudp_socket_t rsocket) {

    struct timeval now, interval,        t;
    gettimeofday(&now, NULL);
    interval.tv_sec = 0;
    interval.tv_usec = RUDP_CHECK_INTERVAL;
    timeradd(&now, &interval, &t);
    event_timeout(t, rudp_close_session, rsocket, "rudp_close_socket");
    return 0;
    /*
        peer_t p;
        packet_t pkt;
        struct rudp_hdr *hdr;
        hdr = malloc(sizeof (struct rudp_hdr));
        if (hdr == NULL) {
            perror("rudp_sendto: malloc");
        return -1;
        }
        pkt = malloc(sizeof (struct packet));
        if (pkt == NULL) {
            perror("rudp_sendto: malloc");
            return -1;
        }
        for (p = rsocket->peers; p != NULL; p = p->next) {
            hdr->version = RUDP_VERSION;
            hdr->type = RUDP_FIN;
            hdr->seqno = p->sn++;
            pkt->data = NULL;
            pkt->datalen = 0;
        pkt->header = hdr;
            pkt->next = NULL;
            pkt->trans_count = 0;
            pkt->status = IN_QUEUE;
            if (add_packet(&p->packets, &pkt) < 0) {
                perror("rudp_sendto: add_packet");
                return -1;
            }
        }
        return 0;
     */
}

int rudp_close_session(int fd, void *arg) {
    event_timeout_delete(rudp_close_session, arg);
    rudp_socket_t rs        = (rudp_socket_t) arg;
    peer_t p;
    //printf("closing rudp socket %d\n", rs->sockfd);
    //printf("peer: %p\n", rs->peers);
    if (rs->peers == NULL) {
        //printf("peer null\n");
        event_fd_delete(rudp_listen, rs);
        close(rs->sockfd);
        rudp_socket_t r, *rr;
        rr = &rs_head;
        for (r = rs_head; r != NULL; r = r->next) {
            if (r == rs) {
                *rr = r->next;
        free(r);
                return 0;
            }
            rr = &r->next;
        }
        return -1;
    }
    //printf("peers not null\n");
    for (p = rs->peers; p != NULL; p = p->next) {
        //check if there are still packets to be sent
        if (p->packets != NULL) {
            struct timeval now, interval, t;
            gettimeofday(&now, NULL);
            interval.tv_sec = 0;
        interval.tv_usec = RUDP_CHECK_INTERVAL;
            timeradd(&now, &interval, &t);
            event_timeout(t, rudp_close_session, arg, "rudp_close_socket");
            return 0;
        }
        //printf("no packets in this peer, status %d\n", p->status);
        if (p->status != PEER_STATUS_CLOSED) {
            p->status = PEER_STATUS_CLOSING;
            struct rudp_hdr header;
            header.seqno = p->sn;
        header.type = RUDP_FIN;
            header.version = RUDP_VERSION;
            sendto(rs->sockfd, &header, sizeof (struct rudp_hdr), 0,
                    (struct sockaddr*) p->sa, sizeof (struct sockaddr_in));
            struct timeval now, interval, t;
            gettimeofday(&now, NULL);
            if (RUDP_TIMEOUT >= 1000) {
                interval.tv_sec = RUDP_TIMEOUT / 1000;
                interval.tv_usec = 0;
        } else {
                interval.tv_sec = 0;
                interval.tv_usec = RUDP_TIMEOUT * 1000;
            }
            timeradd(&now, &interval, &t);
            event_timeout(t, rudp_close_session, arg, "rudp_close_socket");
            //printf("FIN sent, check again 2s later\n");
            return 0;
        }
        //printf("peer status closed\n");
        if (remove_peer(&(rs->peers), p) < 0)        {
            perror("rudp_close_session: remove_peer");
            return -1;
        } else {
            //printf("peer successfully removed\n");
            struct timeval now, interval, t;
            gettimeofday(&now, NULL);
            interval.tv_sec = 0;
            interval.tv_usec = RUDP_CHECK_INTERVAL;
            timeradd(&now, &interval, &t);
            event_timeout(t, rudp_close_session, arg, "rudp_close_socket");
        return 0;
        }
    }
    return 0;
}

/*
 *rudp_recvfrom_handler: Register receive callback function
 */

int rudp_recvfrom_handler(rudp_socket_t rsocket,
        int (*handler)(rudp_socket_t, struct sockaddr_in *,
        char *, int)) {
    event_fd(rsocket->sockfd, rudp_listen, handler, "rudp_listen");
    event_fd_delete(rudp_listen, rsocket);
    return 0;
}

/*
 *rudp_event_handler: Register event handler        callback function
 */
int rudp_event_handler(rudp_socket_t rsocket,
        int (*handler)(rudp_socket_t, rudp_event_t,
        struct sockaddr_in *)) {
    struct timeval now, interval, t;
    gettimeofday(&now, NULL);
    interval.tv_sec = 0;
    interval.tv_usec = RUDP_CHECK_INTERVAL;
    timeradd(&now, &interval, &t);
    event_timeout(t, rudp_check_status, handler, "rudp_check_status");
    return 0;
}

int        rudp_check_status(int fd, void * arg) {
    event_timeout_delete(rudp_check_status, arg);
    int (*handler)(rudp_socket_t, rudp_event_t, struct sockaddr_in *);
    handler = (int (*)(rudp_socket_t, rudp_event_t, struct sockaddr_in *))arg;
    rudp_socket_t rs;
    peer_t p;
    packet_t pkt;
    for (rs = rs_head; rs != NULL; rs = rs->next) {
        for (p = rs->peers; p != NULL; p = p->next) {
            if (p->status == PEER_STATUS_CLOSED)        {
                handler(rs, RUDP_EVENT_CLOSED, p->sa);
                if (remove_peer(&(rs->peers), p) < 0)
                    return -1;
                return 0;
            }
            for (pkt = p->packets; pkt != NULL; pkt = pkt->next) {
                if (pkt->status == FAILED) {
                    handler(rs, RUDP_EVENT_TIMEOUT, p->sa);
                    if (remove_peer(&(rs->peers), p) < 0)
        return -1;
                    return 0;
                }
            }
        }
    }
    struct timeval now, interval, t;
    gettimeofday(&now, NULL);
    interval.tv_sec = 0;
    interval.tv_usec = RUDP_CHECK_INTERVAL;
    timeradd(&now, &interval, &t);
    event_timeout(t, rudp_check_status, handler, "rudp_check_status");
    return 0;
}

/*
 * rudp_sendto: Send a block of data to the receiver.
        */

int rudp_sendto(rudp_socket_t rsocket, void* data, int len, struct sockaddr_in* to) {
    peer_t p;
    packet_t pkt;
    struct rudp_hdr *hdr;
    hdr = malloc(sizeof (struct rudp_hdr));
    if (hdr == NULL) {
        perror("rudp_sendto: malloc");
        return -1;
    }
    pkt = malloc(sizeof (struct packet));
    if (pkt == NULL) {
        perror("rudp_sendto: malloc");
        return -1;
    }
    p =        find_peer(&(rsocket->peers), to);
    if (p == NULL) {
        perror("rudp_sendto: find_peer");
        return -1;
    }
    if (p->status == PEER_STATUS_INIT) {
        rudp_setup_session(0, p);
    }
    hdr = malloc(sizeof (struct rudp_hdr));
    if (hdr == NULL) {
        perror("rudp_sendto: malloc");
        return -1;
    }
    pkt = malloc(sizeof (struct packet));
    if (pkt == NULL) {
        perror("rudp_sendto: malloc");
        return -1;
    }
    hdr->version = RUDP_VERSION;
    hdr->type = RUDP_DATA;
    hdr->seqno = p->sn++;
    pkt->data = malloc(len);
    if (pkt->data == NULL) {
        perror("rudp_sendto: malloc");
        return -1;
    }
    memcpy(pkt->data, data, len);
    pkt->datalen = len;
    pkt->header = hdr;
    pkt->next = NULL;
    pkt->trans_count = 0;
        pkt->status = IN_QUEUE;
    //printf("adding packet %d to %d\n", pkt->header->seqno, ntohs(p->sa->sin_port));
    if (add_packet(&p->packets, &pkt) < 0) {
        perror("rudp_sendto: add_packet");
        return -1;
    }
    return 0;
}

int rudp_setup_session(int fd, void *arg) {
    event_timeout_delete(rudp_setup_session, arg);
    peer_t p = (peer_t) arg;
    if (p == NULL) {
        perror("rudp_setup_session: error finding peer");
        return -1;
    }
    int sockfd;
    rudp_socket_t rs;
    peer_t pp;
    int flag = 0;
    for (rs = rs_head; rs != NULL; rs = rs->next) {
        for (pp = rs->peers; pp != NULL; pp = pp->next) {
            if (pp == p) {
                sockfd = rs->sockfd;
                flag = 1;
                break;
            }
        }
        if (flag == 1)
        break;
    }
    struct rudp_hdr header;
    header.seqno = p->sn++;
    header.type = RUDP_SYN;
    header.version = RUDP_VERSION;
    sendto(sockfd, &header, sizeof (struct rudp_hdr), 0,
            (struct sockaddr*) p->sa, sizeof (struct sockaddr_in));
    p->status = PEER_STATUS_PASSIVE;

    struct timeval now, interval, t;
    gettimeofday(&now, NULL);
    if (RUDP_TIMEOUT >= 1000) {
        interval.tv_sec        = RUDP_TIMEOUT / 1000;
        interval.tv_usec = 0;
    } else {
        interval.tv_sec = 0;
        interval.tv_usec = RUDP_TIMEOUT * 1000;
    }
    timeradd(&now, &interval, &t);
    event_timeout(t, rudp_session_check, arg, "rudp_timeout");


    gettimeofday(&now, NULL);
    interval.tv_sec = 0;
    interval.tv_usec = RUDP_CHECK_INTERVAL;
    timeradd(&now, &interval, &t);
    event_timeout(t,        rudp_send, NULL, "rudp_send");
    return 0;
}

int rudp_session_check(int fd, void *arg) {
    event_timeout_delete(rudp_session_check, arg);
    peer_t p = (peer_t) arg;
    if (p == NULL) {
        perror("rudp_setup_session: error finding peer");
        return -1;
    }
    if (p->status == PEER_STATUS_PASSIVE) {
        struct timeval now, interval, t;
        gettimeofday(&now, NULL);
        interval.tv_usec = 0;
        interval.tv_sec = 0;
        timeradd(&now, &interval, &t);
        event_timeout(t, rudp_setup_session, arg, "rudp_setup_session");
    }
    return 0;
}
Leave a Comment